Use of Point-Based Stock Data for Growth Projection

Atsushi Yoshimoto

ISM

In Reality: Available Data or Information for Harvest Scheduling

	Α	B C D F	F	
1	Species	1 Spaciac	ne	ł
2	sg	I.Species	572	
3	sg		479	
4	sg		429	
5	sg		235	
6	sg	3 Age of Stands	464	
7	sg		321	
8	sg	4 Location	273	
9	sg	T.LUCATION	1367	
10	sg	5 Ownor	818	
11	sg	5.Owner	8	
12	sg		22	
13	sg	b.Area	151	
14	sg		15	
15	sg	7 Volume	7	
16	sg		6	

Heights from a study plot in Kyushu

Bayesean Method for Predicting Forest Tree Growth Curve - p.3/2

Fitted curve from a lot of measurements (1)

Can we estimate parameter if there are less data?

Bayesean Method for Predicting Forest Tree Growth Curve - p.4/2

Bayesean method

Bayes theorem:

$$f_{Z|X}(z|x) = rac{f_{X|Z}(x|z)f_Z(z)}{\int f_{X|Z}(x|z)f_Z(z)\mathrm{d}z}$$

- $f_{Z|X}$ and $f_{X|Z}$: conditional probability (density)
- f_Z : marginal probability (density)
- By regarding $f_Z(z)$ as prior distribution for Z = (a, b, c)', we get posterior distribution $f_{Z|X}(z|x)$ by Bayes theorem
 - The mode or the mean of $f_{Z|X}(z|x)$ is usually used as a Bayes estimator of Z

Prior distribution for Z = (a, b, c)'

We need to construct a prior distribution $f_Z(z)$

- Method 1: All parameters in $f_Z(z)$ are estimated by data from other trees
- Method 2: Values from a density management diagram are used as the mean parameter in $f_Z(z)$, and the other parameters in $f_Z(z)$ are estimated from other trees
- Here we use Method 1 and assume a Gaussian distribution for $f_Z(z)$
- Interview In
 - We estimate z_0 and Σ_Z from other trees
 - Note that we also estimate σ^2 from other trees

Derivation of Bayes estimator

Since $X|Z \sim N(g(z_0) - A(z_0)(Z - z_0), \Sigma_{X|Z})$ and $Z \sim N(z_0, \Sigma_Z)$, we have

$$\left(egin{array}{c}X\\Z\end{array}
ight) ~\sim~ \mathrm{N}\left(\left(egin{array}{c}g(z_0)\\z_0\end{array}
ight), \left(egin{array}{c}\Sigma_{X|Z}+A(z_0)\Sigma_ZA(z_0)'&A(z_0)\Sigma_Z\\\Sigma_ZA(z_0)'&\Sigma_Z\end{array}
ight)
ight),$$

where $A(z_0)=\partial g(z)/\partial z'|_{z=z_0}$, which leads to

$$Z|X \sim \mathrm{N}(\mu_{Z|X}, \Sigma_{Z|X}),$$

where

$$\begin{split} \Sigma_{Z|X} &= \Sigma_{Z} - \Sigma_{Z} A(z_{0})' (\Sigma_{X|Z} + A(z_{0}) \Sigma_{Z} A(z_{0})')^{-1} A(z_{0}) \Sigma_{Z} \\ &= (\Sigma_{Z}^{-1} + A(z_{0})' \Sigma_{X|Z}^{-1} A(z_{0}))^{-1} \\ \mu_{Z|X} &= z_{0} + \Sigma_{Z} A(z_{0})' (\Sigma_{X|Z} + A(z_{0}) \Sigma_{Z} A(z_{0})')^{-1} (X - g(z_{0})) \\ &= z_{0} + \Sigma_{Z} A(z_{0})' (\Sigma_{X|Z}^{-1} - \Sigma_{X|Z}^{-1} A(z_{0}) \Sigma_{Z|X} A(z_{0})' \Sigma_{X|Z}^{-1}) (X - g(z_{0})) \\ &= z_{0} + \Sigma_{Z|X} A(z_{0})' \Sigma_{X|Z}^{-1} (X - g(z_{0})) \end{split}$$

Bayesean Method for Predicting Forest Tree Growth Curve - p.12/2

Published in Feb, 2012

Estimated curve from a few measurements (1)

Bayesean Method for Predicting Forest Tree Growth Curve - p.13/2

How about with only one data?

Recursive Approach to Update Prior Information

Volume Data

1. Species 2. ID 3. Age of Stands 4. Location 5. Owner 6. Area 7. Volume

Classify Data by Species with Bayesean Method

Estimating Growth Curve as Prior Information

