団地化での森林資源管理

吉本 敦 統計数理研究所

集約化:団地化

どの林分群を集約(団地化)するのか?

時空間的最適化モデル

集約化された場所での施業時期を考慮 解法:集約候補の生成により対応

傘伐管理 3 cut system

5つのストリップの連続群の配置

Windstorm Prevention Problem

Strip Shelterwood Management 2 cut system

Strip Shelterwood Management 3 cut system

Strip Shelterwood Management Scheme

progress from windward to leeward

Hyper Unit and Neighbors

 $NB_i^{(0)}$: i-th unit itself, 0 degree adjacency $NB_i^{(1)}$: neghbors of the 1st degree adjacency for the i-th unit $NB_i^{(2)}$: neghbors of the 2nd degree adjacency for the i-th unit $NB_i^{(n)}$: neghbors of the n-th degree adjacency for the i-th unit $NB_i^{(j)}$: those units adjacent to $\{ \mathbf{J} NB_i^{(k)} \}$ k=1 $HU_i = \bigcup^M NB_i^{(k)}$ k=1

Strip Shelterwood Management Scheme

Developing Hyper Unit

• Adjacency for Units from windward to leeward

Prevention of overlapping by adjacency HU for 3 cut system

Example for Schelterwood Scheme

Period	Cut	Strip												
		1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	S												
	2	R	S						S					
	3	F	R	S					R	S				
2	4		F	R	S				F	R	S			
	5			F	R	S				F	R	S		
	6				F	R	S				F	R	S	
3	7					F	R	S				F	R	S
	8						F	R					F	R
	9							F						F
S – seeding cut, R – removal cut, F – final cut														
Period	Cut	Strip												
		1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	S					S							
	2	F	S				F	S				S		
2	3		F	S				F	S			F	S	
	4			F	S				F	S			F	S
3	5				F	S				F	S			F
	6					F					F			

S – seeding cut, **F** – final cut

Elements of Hyper Unit

3 Cut System ${7\atop HU_i}= \mathop{{\rm U}}\limits_{k=1}^7 NB_i^{(k)}$

Optimization Problem

- Objective: max # of strips to be treated
- Spatial Constraints
 - Avoid overlapping of HUs
 - Avoid the same treatment for adjacent units at the same time (normal adjacency)

5 Strips Connection2 Cut System4 strips uncut

6 Strips Connection 5 strips uncut

7 Strips Connection3 Cut System11 strips uncut

Aggregation Problem with Spatial Adjacent Constraints

We assume that one clique is created based on one unit with certain buffer connection

Steps

a) Create candidate cliques (Hyper Units) for aggregation based on units, and define decision variable matrix

Introduce two kinds of index sets:

Original Unit Set: $u_i = \{i\}$ Hyper Unit Set : $HU_i = \{i\}$ for clique based on $u_i\}$

b) Develop extended land accounting constraints for overlapping

c) Develop adjacency constraints for HUs and original units

d) Formulate spatially constrained problem with area restriction under multiple harvests

a) Create candidate clique for aggregation based on each unit

Hyper Units $:HU_i = \{ \text{indices combined for clique based on } u_i \}$

Introduce decision variables for HUs

$$\begin{split} \boldsymbol{X} & (m \times n) : \boldsymbol{x}_{\!_{i,j}} = \begin{cases} 1 & \text{if the } j\text{-th treatment is implemented for } \boldsymbol{u}_{\!_i} \\ 0 & \text{otherwise} \end{cases} \\ \boldsymbol{Y} & (m \times n) : \boldsymbol{y}_{\!_{i,j}} = \begin{cases} 1 & \text{if the } j\text{-th treatment is implemented for } H\boldsymbol{U}_{\!_i} \\ 0 & \text{otherwise} \end{cases} \end{cases}$$

Decision Variable Matrix for HU and u

$$oldsymbol{W} = egin{pmatrix} oldsymbol{X} \ oldsymbol{Y} \end{pmatrix} \qquad (2m imes n)$$

b) Develop extended land accounting constraints for overlapping

Ordinal land accounting = Overlapping of treatments

$$oldsymbol{X}oldsymbol{1}_n\leqoldsymbol{1}_m$$

Different treatments are overlapping for one unit

Different Treatments for *HU* and *u* are overlapping over each unit

Introduce Matrix for Overlapping

For overlapping between \mathbf{u}_{i} and \mathbf{u}_{j}

$$\boldsymbol{A}^{Ou} \quad (m \times m) \qquad : a_{i,j}^{Ou} = \begin{cases} 1 & \text{if } \mathbf{u}_i \cap \mathbf{u}_j \neq \emptyset \\ 0 & \text{if } \mathbf{u}_i \cap \mathbf{u}_j = \emptyset \end{cases}$$

$$\begin{split} & \text{For overlapping between } \mathbf{u}_i \text{ and } \mathbf{HU}_j \\ & \mathbf{A}^{Oh} \quad (m \times m) \quad : a_{i,j}^{Oh} = \begin{cases} 1 \quad \text{if } \mathbf{u}_i \cap \mathbf{HU}_j \neq \varnothing \\ 0 \quad \text{if } \mathbf{u}_i \cap \mathbf{HU}_j = \varnothing \end{cases} \end{split}$$

Overlapping Matrix for HU and u

$$oldsymbol{A}^{\scriptscriptstyle O}=(oldsymbol{A}^{\scriptscriptstyle Ou},oldsymbol{A}^{\scriptscriptstyle Oh}):(m imes 2m)$$

Extended Land Accounting Constraints

$$oldsymbol{A}^{\scriptscriptstyle O}=(oldsymbol{A}^{\scriptscriptstyle Ou},oldsymbol{A}^{\scriptscriptstyle Oh}):(m imes 2m)$$

Spatial Adjacency for HU and u

c) Develop Adjacency Constraints for *HU* and *u*

adjacency constraints for HU and u

Spatial Adjacency for HU and u

$$\begin{split} \boldsymbol{A}^{S} = & \left(\begin{array}{c|c} \boldsymbol{A}_{\text{u-u}} & \boldsymbol{A}_{\text{u-HU}} \\ \boldsymbol{A}_{\text{HU-HU}} & \boldsymbol{A}_{\text{HU-HU}} \end{array} \right) \begin{array}{l} (2m \times 2m) \\ \boldsymbol{A}_{\text{u-HU}} \left(= \boldsymbol{A}_{\text{HU-u}}^{\prime} \right) \\ \boldsymbol{A}_{\text{u-HU}} \left(= \boldsymbol{A}_{\text{HU-u}}^{\prime} \right) \\ \end{array} \\ \\ \boldsymbol{A}_{\text{u-HU}} : \boldsymbol{a}_{i,j}^{\text{u-HU}} = \begin{cases} 1 & \text{if } \mathbf{u}_{i} \in \bigcup_{k \in \text{HU}_{j}} \text{NB}_{k} \text{ and } \mathbf{u}_{i} \cap \text{HU}_{j} = \varnothing \\ 0 & \text{otherwise} \\ \end{cases} \\ \\ \boldsymbol{A}_{\text{HU-HU}} : \boldsymbol{a}_{i,j}^{\text{HU-HU}} = \begin{cases} 1 & \text{if } \text{HU}_{i} \cap \bigcup_{k \in \text{HU}_{j}} \text{NB}_{k} \neq \varnothing \text{ and } \text{HU}_{i} \cap \text{HU}_{j} = \varnothing \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Adjacency Constraints for HU & u

Summarize: Definition of Decision variable Matrix Decision variable matrix

$$oldsymbol{W} = egin{pmatrix} oldsymbol{X} \ oldsymbol{Y} \end{pmatrix} oldsymbol{X}$$
 for a set of $\{\mathrm{u}_i\}, \ oldsymbol{Y}$ for a set of $\{\mathrm{HU}_i\}$

$$\begin{split} x_{\scriptscriptstyle i,j} &= \begin{cases} 1 \;\; \text{if the j-th treatment is implemented for \mathbf{u}_i} \\ 0 \;\; \text{otherwise} \end{cases} \\ y_{\scriptscriptstyle i,j} &= \begin{cases} 1 \;\; \text{if the j-th treatment is implemented for HU_i} \\ 0 \;\; \text{otherwise} \end{cases} \end{split}$$

Definition of Coefficient Matrix

Coefficient matrix

$$\begin{split} & ilde{C} = egin{pmatrix} C \ ar{c} \ ar{c} \end{pmatrix} & (2m imes n) \ & c_{i,j} : ext{coefficient of } x_{i,j}, \ ar{c}_{i,j} : ext{coefficient of } y_{i,j} \ & ar{c} \ ar{c} = (1 + \alpha) \sum c_{i,j} \cdot c_{i,j} \cdot c_{i,j} : ext{reward rate} \end{split}$$

 $\overline{c}_{\!_{i,j}} = (1+\alpha) \sum_{k \in \mathrm{HU}_i} c_{\!_{k,j}}, \ \alpha: \ \mathrm{reward} \ \mathrm{rate}$

Definition of Volume Matrix

Volume flow matrix at period p

$$\tilde{\boldsymbol{V}}_{p} = \begin{pmatrix} \boldsymbol{V}_{p} \\ \bar{\boldsymbol{V}}_{p} \end{pmatrix} = \begin{pmatrix} v_{1,1}^{p} & \dots & v_{1,n}^{p} \\ \vdots & \ddots & \vdots \\ v_{1,m}^{p} & \dots & v_{m,n}^{p} \\ \overline{v}_{1,1}^{p} & \dots & \overline{v}_{1,n}^{p} \\ \vdots & \ddots & \vdots \\ \overline{v}_{1,m}^{p} & \dots & \overline{v}_{m,n}^{p} \end{pmatrix}$$
(2*m*×*n*)

 $v_{\scriptscriptstyle i,j}^{\scriptscriptstyle p}$: volume flow from $x_{\scriptscriptstyle i,j}, \quad \overline{v}_{\scriptscriptstyle i,j}^{\scriptscriptstyle p}$: volume flow from $y_{\scriptscriptstyle i,j}$

$$\overline{v}_{i,j}^{p} = \sum_{k \in \mathrm{HU}_{i}} v_{k,j}^{p}$$

d) Formulation with area restriction under multiple harvests

Max PNV

$$Z = \max_{\boldsymbol{X}} \operatorname{tr}(\tilde{\boldsymbol{C}}'\boldsymbol{W}) = \sum_{i=1}^{m} \sum_{j=1}^{n} (c_{i,j} \cdot x_{i,j} + \overline{c}_{i,j} \cdot y_{i,j})$$

st.